Privacy-Preserving For Collaborative Data Publishing

نویسندگان

  • V. V. Nagendra
  • Rajeev Gandhi
چکیده

This paper mainly deals with the issue of privacy preserving in data mining while collaborating n number of parties and trying to maintain confidentiality of all data providers details while collaborating their database. Here two type of attacks are addressed “insider attack” and “outsider attack”. In insider attack, the data providers use their own records and try to retrieve other data provider details. Formal protection model k-Anonymity, l-diversity, t-closeness are used to protect privacy. Here notion of m-privacy algorithm is used to maintain privacy and secure multiparty computation protocol can also be used for privacy preserving. Keywords—Privacy preserving, Anonymization, SMC,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارایه یک روش جدید انتشار داده‌ها با حفظ محرمانگی با هدف بهبود دقّت طبقه‌‌بندی روی داده‌های گمنام

Data collection and storage has been facilitated by the growth in electronic services, and has led to recording vast amounts of personal information in public and private organizations databases. These records often include sensitive personal information (such as income and diseases) and must be covered from others access. But in some cases, mining the data and extraction of knowledge from thes...

متن کامل

Data Preserving By Anonymization Techniques for Collaborative Data Publishing

This paper mainly deals with the issue of privacy preserving in data mining while collaborating n number of parties and trying to maintain confidentiality of all data providers details while collaborating their database. Here two type of attacks are addressed “insider attack” and “outsider attack”. In insider attack, the data providers use their own records and try to retrieve other data provid...

متن کامل

Multi-Privacy Collaborative Data publishing with Efficient Anonymization Techniques

Privacy-preserving in collaborative data publishing provides methods and tools for publishing the data while protecting the sensitive information in the data set. The success of data mining in privacy relies on the information sharing and quality of data in a distributed environment. Several anonymization techniques have been proposed such as bucketization, generalization which does not prevent...

متن کامل

An Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling

In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...

متن کامل

Privacy - Preserving Data Publishing

The success of data mining relies on the availability of high quality data. To ensure quality data mining, effective information sharing between organizations becomes a vital requirement in today's society. Since data mining often involves person-specific and sensitive information like medical records, the public has expressed a deep concern about their privacy. Privacy-preserving data publishi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014